

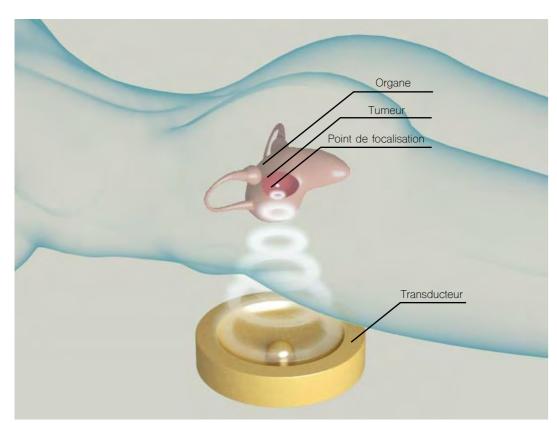
Ultrasons Focalisés de Haute Intensité Guidés sous Echographie

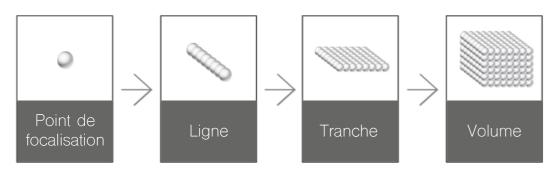
Unité thérapeutique autonome

Table de Traitement

- Générateur Haute FréquenceTransducteurs intégrésMouvement 4 ou 6 axes

- Console opérateur


 Monitoring échographiste
 Contrôle du traitement



Système Auxiliaire

- Alimentation électrique

Technologie Non Invasive

Technologie HIFU

 Un faisceau d'ultrasons convergents est émis à travers les tissus et se focalise en un minuscule point de quelques mm³ La forte énergie délivrée au point de focalisation entraîne un échauffement immédiat et intense des tissus visés (56° à 85°c)

Principe Thérapeutique

La destruction tissulaire est assurée par 3 phénomènes simultanés :

- Hyperthermie ou ablation thermique de la zone ciblée
- Nécrose ischémique du volume traité
- Effet de cavitation intracellulaire

Suite Logicielle Complète

La suite logicielle intégrée «TPS» propose l'ensemble des outils pour préparer et gérer votre intervention :

- Le module de ciblage 3D vous permet de définir les marges tumorales
- Le module de planning 3D modélise la tumeur, propose les points à traiter et élabore un plan thérapeutique patiente-spécifique.
- Le module de traitement permet un monitoring en temps réel du traitement réalisé par l'opérateur. Il suit la localisation et le volume d'énergie délivrée et permet le réglage des différents paramètres.

Technologie de précision

Un geste précis

- Logiciel de planification pour un traitement spécifique aux tumeurs traitées, sans limite de volume ou de forme
- La marge entre tissu traité et non-traité est d'une largeur de 6 à 10 cellules

Un geste dosé

- L'image obtenue après une exposition peut immédiatement être comparée avec la précédente
- A tout moment l'opérateur peut ajuster les paramètres et s'adapter aux besoins et retours de la patiente
- L'énergie délivrée sur les différents points de focalisation est automatiquement enregistrée et cartographiée

Un geste contrôlé

- L'imagerie en temps réel offre un contrôle visuel direct tout au long du traitement
- Avec une précision de +/- 1mm, le robot de guidage permet le traitement de tumeurs adjacentes à des vaisseaux ou des nerfs
- Le Doppler couleur fournit un monitoring efficace et disponible à tout moment de la procédure

3

Utilisation générale

Indications

Tumeurs solides des tissus mous

En Gynécologie :

- Flbrome utérin
- Adénomyose
- Placenta accreta
- Cancer du sein

Autres Spécialités :

- Cancer du foie
- Cancer du pancréas
- Cancer du rein
- Tumeurs osseuses

Contre-indications générales

- Tumeur localisée dans un organe contenant de l'air comme les poumons, l'estomac ou le côlon
- Tumeur médiastinale
- Tumeur de la moelle épinière

Traitement du Fibrome Utérin par Ultrasons focalisés de haute intensité guidés sous échographie (USgHIFU)

Contre-indications complémentaires

- Cicatrice
- Fibrome très vascularisé
- Fibrome de type VI FIGO avec anse digestive accolée et type VII

Aspects cliniques

- Traitement **non invasif** qui préserve les organes et structures tout en évitant transfusions sanguines et radiations
- Pas d'anesthésie générale (sédation modérée)
- Efficacité et Sécurité grâce au logiciel de planification couplé à la précision du transducteur
- Traitement en une séance sans limitation de volume ou de forme des tumeurs
- Procédure en temps-réel guidée sous échographie avec analyse quantitative digitale
- Compatible avec désir de grossesse
- Durée de l'hospitalisation (ambulatoire)
- Compatible avec les autres techniques conventionnelles
- Douleur et temps de retour à l'activité

Fibromes Utérins

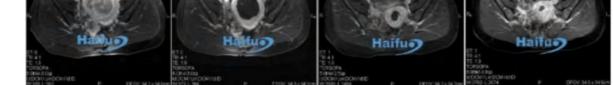
Examens IRM d'une patiente de 37 ans présentant des fibromes utérins. Avant le traitement, le fibrome présente une vascularisation abondante et active. 14 jours après le traitement, le fibrome montre une réduction significative de sa taille ainsi qu'une nécrose ischémique. 4 à 10 mois après le traitement par HIFU, la réduction des fibromes traités est clairement démontrée.

Un accompagnement complet

Équipement de pointe

Protégées par de nombreux brevets, les séries JC et JC 200 possèdent le marquage CE. Elles bénéficient également des 20 années de recul et d'optimisation du fabricant Haifu Medical.

Equipe expérimentée


Notre équipe d'ingénieurs et de spécialistes cliniques vous accompagne à chaque étape du projet : plan financier, étude des locaux, installation, formation des opérateurs. Tous ces services sont internalisés pour permettre une intégration fluide et efficace de la technologie au sein de votre établissement.

Approche personnalisée

Définition de protocoles cliniques adaptés, conseils sur les aspects financiers et opérationnels, coopération scientifique, etc. Nous vous accompagnons dans toutes ces réflexions et leur mise en oeuvre pour vous offrir la solution sur-mesure la plus pertinente.

 ϵ

Quelques publications de référence

Chen J, Li Y, Wang Z, McCulloch P, Hu L, Chen W, Liu G, Li J, Lang J.

Evaluation of high-intensity focused ultrasound ablation for uterine fibroids: an IDEAL prospective exploration study.

2018 Feb;125(3):354-364. doi: 10.1111/1471-0528.14689. Epub 2017 Jun 5.

Table 3. Effects of high-intensity focused ultrasound (HIFU) and myomectomy on measures of uterine fibroid symptoms quality of life (UFS-QoL) score in women with uterine fibroids

Parameter	UFS-QoL score or change in score			
	HIFU group (<i>n</i> = 1353)	Myomectomy group (n = 586)	P (unadjusted)	P (adjusted)
UFS				
Baseline	19.89 ± 14.29	15.34 ± 13.34	0.000	
At 6 months	10.20 ± 10.18	7.09 ± 8.25	0.000	
At 12 months	7.73 ± 9.65	5.77 ± 7.77	0.000	
Absolute difference at 6 months	−9.84 ± 13.37	−8.23 ± 13.10	0.002	0.034
Absolute difference at 12 months	−12.17 ± −9.71	−9.71 ± 13.69	0.000	0.001
QoL				
Baseline	72.75 ± 16.33	72.85 ± 14.46	0.532	
At 6 months	82.49 ± 12.94	80.44 ± 12.41	0.000	
At 12 months	85.84 ± 12.22	83.45 ± 11.28	0.000	
Absolute difference at 6 months	9.61 ± 14.01	7.42 ± 12.83	0.001	0.001
Absolute difference at 12 months	12.89 ± 16.16	10.50 ± 15.33	0.008	0.002

Li JS, Wang Y, Chen JY, Chen WZ. Pregnancy outcomes in nulliparous women after ultrasound ablation of uterine fibroids: A single-central retrospective **study.** 2017 Jun 21;7(1):3977. doi: 10.1038/ s41598-017-04319-y.

Pregnancy outcomes	Cases (n)
Delivery mode	93 (70.0%)
Cesarean section*	67 (72%)
Vaginal delivery	26 (28%)
On-going pregnancy	19 (14.3%)
Abortion	21 (15.8%)
Spontaneous abortion	17 (12.8%)
Induced abortion	4 (3.0%)

High-intensity focused ultrasound and laparoscopic myomectomy in the treatment of uterine fibroids: a comparative study.

Table 1. Perioperative period comparisons between HIFU group and LM group Hospital stay, Time of feeding, Group (n) Postoperative Surgery time, Return to normal days minutes activity, hours hours pain score HIFU group (n = 99)88.43 2.04 3.86 1.02 24.66* 7.49* 24.64* LM group (n = 67)93.06 3.60* *P < 0.05.

Chen J, Chen W, Zhang L, Li K, Peng S, He M, Hu L. Safety of ultrasound-guided ultrasound ablation for uterine fibroids and adenomyosis: A review of 9988 cases. 2015 Nov;27:671-676. doi: 10.1016/j. ultsonch.2015.05.031. Epub 2015 May 27

Evaluation on technical parameters.		
Technical parameters	Uterine fibroids	Adenomyosis
Technical success rate (%)	98.38 (7319/7439)	94.59 (2411/2549)
Treatment duration (min)	84.2 ± 38.8	93.3 ± 55.4
	(30.0-240.0)	(15.0-240.0)
Sonication duration (sec)	1243.8 ± 725.2	1169.7 ± 707.7
	(506.0-2658.0)	(185.0-3600.0)
Volume of ablation (cm ³)	78.5 (53.1, 129.4)	48.7 (5.54, 117.4)
Non-perfused volume rate (%)§	83.1 ± 15.6	73.2 ± 23.6
	(25.0-100.0)	(21.0-100.0)

	(25.0–10	0.0) (21.0-100.0)
Definition	s of SIR Class and percentage incidence	e(N = 9988).	
SIR Class	Description	Number of patients	Percentage of patients with complications
Α	No therapy, no consequences	1228	12.29%
В	Nominal therapy, observation, no consequences	45	0.45%
С	Required therapy, minor hospitalization(<48 h)	26	0.26%
D	Major therapy, unplanned increase in level of care, prolonged hospitalization (>48 h)	6	0.06%
Е	Permanent adverse sequelae	0	0
F	Death	0	0

Liu Y, Zhang WW, He M, Gong C, Xie B, Wen X, Li D, Zhang L

Adverse effect analysis of high-intensity focused ultrasound in the treatment of be**nign uterine diseases.** 2018;35(1):56-61. doi:

	Uterine fibroids (%)
Skin burns	0.1494
Leg pain	0.0575
Urinary retention	0.0402
Vaginal bleeding	0.0345
Hyperpyrexia	0.0287
Renal failure	0.0230
Acute cystitis	0.0172
Bowel injury	0.0172
Intrauterine infection	0.0115
Deep vein thrombosis	0.0115
Hydronephrosis	0.0057
Pubic symphysis injury	0.0057
Thrombocytopenia	0.0057
Sciatic nerve injury	-
Total	0.4080

University Clinics

Bonn, Allemagne

European Institute of Oncology

Oxford University NHS
Hospitals

The John Radcliffe Hospital

Oxford, Royaume-Unis

Queen Mary Hospital Queen Mary Hospital of the University Hong Kong, Chine

pays dans le monde

Caractéristiques techniques

Série JC

Série JC 200

Rendement de la focalisation acoustique	28 000		
Région focale	1.1mm x 1.1mm x 3.3mm		
Intensité acoustique maximale	25000W	//cm ³	
Puissance acoustique de sortie maximale	400	W	
Lobe latéral	<-10	dB	
Amplitude de mouvement du transducteur	X= 120mm, Y= 120mm, Z= 180mm		
Précision de contrôle du déplacement	±0.1mm		
Tolérance cumulée en mouvement linéaire	±1mm		
Fréquence thérapeutique	0.8-2.4MHz		
Amplitude de mouvement vertical de la sonde	0-100mm		
Amplitude de l'angle de rotation de la sonde	±90°		
Oxygène dissous	< 3ppm		
Puissance électrique	12.5KVA	8.5KVA	
Axes de mouvement	6 axes	4 axes	
Espace requis	Surface: >40m², Largeur: >5m	Surface: >20m², Largeur: >3.5m	
Puissance électrique requise	Cinq cables triphasés avec prise de terre en conformité avec les réglementations locales		
Prérequis pour l'eau	Débit : >1m3/h, Pression : 0.1-05MPA		

WITH YOU TO CHANGE LIVES

www.twin-healthcare.com

